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ABSTRACT: Relaxation time is an essential physical quantity reflecting the hysteresis of the microstructure of materials. To associate

the relaxation time with the strain rate, the stress–strain curves of six types of polymers at low strain rate were normalized, and a

nondimensional generalized Maxwell model incorporating strain-rate-dependent relaxation times was obtained by the internal vari-

able theory of irreversible thermodynamics. The results indicate that the constitutive equation may capture well the normalized

stress–strain behaviors that are not related to the strain rate. The ratio of the initial modulus to the secant modulus at the maximum

stress was also found to not rely on the strain rate anymore. Furthermore, strain-rate independence occurred only when the relaxation

time was proportional to the time interval for stress from zero to the maximum stress. The relaxation time varied in a power law

with the strain rate. The explicit relation is helpful for providing a concise and promising solution for predicting the quasi-static

mechanical response of viscoelastic solids. VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44114.
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INTRODUCTION

Polymers are usually considered a random packing of low-

density and high-density nanoscale domains bound together by

intramolecular and intermolecular forces; the deformation-

induced segmental mobility correlates with the strain rate.1,2

Therefore, the stress of polymers not only depends on the cur-

rent strain but also on the strain rate and the deformation his-

tory.3 As a reduced mobility during strain hardening is coupled

with an increase in the rate of nonaffine segmental displace-

ments,4 both the strength and stiffness (including the tangential

modulus and secant modulus) of polymers increase with the

strain rate. Therefore, a number of efforts have been made to

investigate the strain-rate-dependent mechanical properties of

polymers and their composites. Most researchers have concen-

trated on the high-strain-rate deformation and failure behavior

of these viscoelastic solids with split-Hopkinson pressure bar

(SHPB); a relatively limited number of works has addressed the

strain-rate effects under quasi-static loading. For example, Kara

et al.5 reported that the modulus and maximum stress of a

symmetric E-glass/polyester composite increased with increasing

strain rate, whereas the strain-rate sensitivity in the in-plane

direction was higher than that in the through-thickness direc-

tion. From the one-dimensional stress–strain curves of polycar-

bonate (PC) under different strain rates, van Breemen et al.6

observed a great effect of the strain rate on the true stress. Qiao

and Wu7 evaluated the rate dependence of the mechanical

behavior of polyurea in a strain-rate region from 5.3 3 1024 to

5.1 3 1022 s21 and compared it with results at intermediate

strain rates.

To quantitatively describe the dependence of the strain rate,

Nemat-Nasser and Hori8 thought that two classes of constitutive

models could be identified within the phenomenological frame-

work: (1) fully rate-dependent plasticity and (2) viscoplasticity.

Usually, the latter is applied for metal materials. For the former,

Nemat-Nasser and Hori further pointed out the deformation

rate consists of an elastic constituent and an inelastic constitu-

ent throughout the entire deformation history. If such an inelas-

tic deformation is considered a viscous deformation, this model

will degenerate into a viscoelastic case. As the yield surface does

not exist in the deformation of polymers, the viscoelastic model

is suitable for describing the strain-rate effects.

The relaxation time is an essential physical quantity in the vis-

coelastic constitutive model; it reflects the hysteresis of the

microstructure of polymeric materials under external load-

ing.9–16 The dependence of the relaxation times on the shear

(or strain rate) has been studied extensively for viscoelastic flu-

ids in the past. For instance, in polymer melts, nonequilibrium

molecular dynamic simulations have shown that the relaxation
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times of polymer chains are shear-rate dependent, especially in

high values of shear rate (nonlinear regime); general discussions

were given in the seminal work by Evans and Morriss17 and in

reports by Baig and coworkers.18,19 Nonetheless, the relaxation

time has normally been treated as an inherent characteristic

constant for polymeric solids that would not be affected by the

loading conditions; the result of this may be the overstatement

of the material properties. To overcome this drawback, a strain-

dependent relaxation time perspective was proposed for a visco-

hyperelastic constitutive equation to track the large compressive

and tensile deformation response of incompressible elastomeric

materials at high strain rates.20 Similarly, with respect to the

strain dependence of the relaxation time, Khajehsaeid et al.21

developed a three-dimensional viscohyperelastic constitutive

model for describing the rate-dependent behavior of rubberlike

materials at large deformations. These results are of great

importance for modeling the stress–strain curve of elastomeric

materials in a wide range of strains. However, because the num-

ber of required material parameters is still relatively large, it

appears that these viscohyperelastic models are not conveniently

applied in the design of polymeric products. In addition, there

is very little known about whether the strain rate has a substan-

tial influence on the relaxation time of a glassy polymer sub-

jected to quasi-static stress and how to quantitatively describe

the rate sensitive effect. Nevertheless, this issue is crucial for

adequately and efficiently evaluating the mechanical behaviors

of viscoelastic solids in service life.

Because of their good physical and mechanical properties, resis-

tance to chemical corrosion, and easy processing, PC, polyamide

6 (PA6), high-density polyethylene (HDPE), propene (PP), and

hot-mix asphalt have played significant roles in a wide number

of areas, including in electrical and electronics components, the

aerospace industry, and the automotive and construction indus-

tries. Therefore, these typical polymers, including not only

glassy solids (PC, PA6, and hot-mix asphalt) but also elastomers

[hydroxyl-terminated polybutadiene (HTPB), HDPE, and PP]

were used in this investigation on the strain-rate dependence of

the relaxation time. The published experimental tension data

from previous thermoplastic polymers (PC,6 PA6,22 hot-mix

asphalt,23 HDPE,24 and PP9 and thermosetting elastomers

(HTPB15) under low strain rates were normalized by a coordi-

nate scaling transformation method, and we noted that the

processed stress–strain relations were strain-rate independent.

According to internal variables, the theory of irreversible

thermodynamics, and Onsager’s principle, a nondimensional

general Maxwell model incorporating strain-rate-dependent

relaxation times, was obtained. The experimental results indicate

that the constitute equation with a single relaxation time is able

to capture the quasi-static tensile behavior of the previous six

types of viscoelastic solids. Furthermore, the association

between the relaxation time and strain rate was analyzed in

detail. We observed that the relaxation time of polymers varied

as a power law function of the strain rate. Finally, we attempted

to qualitatively explain this relationship by virtue of the molec-

ular network model of polymers.

NORMALIZED STRESS–STRAIN RELATION UNDER
COORDINATE SCALING TRANSFORMATION

With the purpose of discussing the impacts of the strain rate on

the relaxation time, we first analyzed the one-dimensional

experimental constitute behaviors of typical polymers, the glass-

transition temperature, weight-average molecular weight, and

testing conditions of which are listed in Table I. Figure 1(a–f)

shows the stress–strain curves at different strain-rate values for

PC,6 PA6,22 hot-mix asphalt,23 HTPB,15 HDPE,24 and PP,9

respectively. We readily observed that all of the stress–strain

curves were rate sensitive.

For convenience, coordinate scaling transformation25 was

adopted, where the following equalities were assumed:

r�5r=r0; E�5E=E0; t�5t=t0; (1)

where r* is the normalized stress, r is the stress, r0 is the maxi-

mum stress on the stress–strain curve, E* is the normalized strain,

E is the strain, E0 is the strain at r0, t* is normalized time, t is

time and t0 is the time interval for stress increases from 0 to r0.

Equation (1) was applied to normalize the constitute curves for

the mentioned polymers, as shown in Figure 2. We observed

that for the same material, the normalized stress–strain data for

different strain rates were almost located on a single curve.

Therefore, we could regard the normalized stress–strain relation

as strain-rate independent.

NONDIMENSIONAL GENERALIZED MAXWELL MODEL WITH
THE STRAIN-RATE-DEPENDENT RELAXATION TIME

For the glassy polymeric solid under quasi-static loading, it was

rational to presume that the deformation in material was small,

and the thermodynamic process of the system was treated as an

Table I. Material Parameters and Testing Conditions for the Polymeric Solids

Polymer Classification
Experimental
temperature (8C)

Glass-transition
temperature (8C)

Weight-average
molecular weight (g/mol) Specimen type

PC Thermoplastic Room temperature 150 30,500 ASTM D 638

PA6 Thermoplastic 25 53 18,000–52,000 ASTM D 638

Hot-mix asphalt Thermoplastic 20 263 — ASTM D 638

HTPB Thermosetting 50 276 100,000 PRC QJ 924

HDPE Thermoplastic 18 268 274,000 ASTM D 638M

PP Thermoplastic 5 210 386,648 ASTM D 638M
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isothermal process, where free-energy density functions no lon-

ger contained temperature. The Helmholtz free-energy density

function (w) can be expressed as follows:

w5
Xn

i51

wi

wi5
1

2
EiðE2niÞ2 ði51; . . . ; nÞ

(2)

where ni (i 5 1, . . ., n) is an internal variable indicating the

inelastic strain and Ei (i 5 1, . . ., n) is the modulus. Thus, the

relation between the stress and strain can be treated as follows:

r5
ow
oE

5
Xn

i51

owi

oE
5
Xn

i51

EiðE2niÞ (3)

Generally, the evolution equation of an internal variable may be

assumed to obey Onsager’s principle, namely

hi
_n i5

ow
oni

5EiðE2niÞ (4)

where hi (i 5 1, . . ., n) is the viscosity coefficient. The change

rate of the internal variable with respect to time _n i can be cal-

culated as follows:

_ni5
1

sMi

ðE2niÞ (5)

where sMi 5 hi/Ei (i 5 1, . . ., n) represents the relaxation time

spectrum.

Let

EðeÞi5E2ni (6)

where E(e)i (i 5 1, . . ., n) is the ith normalized elastic strain.

With the derivation of time taken to eq. (6), this yields

_EðeÞi5 _E2 _ni (7)

The solution of eqs. (5) and (6) can be expressed as follows:

EðeÞi5
ðt

21

exp 2
t2s
sMi

� �� �
_EðsÞds (8)

where, s is an independent variable, which represents a random

time point before the time point of t. The substitution of eq.

(8) into eq. (3) gives

r5
Xn

i51

Ei

ðt

21

exp 2
t2s
sMi

� �� �
_EðsÞds (9)

Set

s�M 5sM=t0 and EðsÞ5r0=E0 (10)

where s*M is the normalized relaxation time, sM is the relaxation

time. Dividing the maximum stress with respect to both sides

of eq. (9), and considering eqs. (1) and (10), we obtain

r�5
Xn

i51

Ei

EðsÞ

ðt�

21

exp 2
t�2s�

s�Mi

� �� �
_E�ðs�Þds� (11a)

Equation (11a) is the nondimensional constitute relation, which

is an extension of the generalized Maxwell model incorporating

strain-rate-dependent relaxation times, and it can be also

expressed by the following formula, that is

Figure 1. Stress–strain curves of (a) PC, (b) PA6, (c) hot-mix asphalt, (d) HTPB, (e) HDPE, and (f) PP under uniaxial stress at different strain rates

(de/dt values). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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r�5
Xn

i51

Ai

ðE�ðt�Þ

0

exp2
E� t�Þ2E�ðs�ð Þ

s�M

� ��
dE�ðs�Þ;Ai5

Ei

EðsÞ
(11b)

RESULTS AND DISCUSSION

An important question is how many terms used in eq. (11)

could perfectly describe the normalized experimental stress–

strain curves of the PC, PA6, hot-mix asphalt, HTPB, HDPE,

and PP under uniaxial tension at a low strain rate. As shown in

Figure 2, the simplified constituted equation (n 5 1), that is,

only the use of a single relaxation time [see eq. (12)] tracked

the tensile behavior of the six types viscoelastic solids well in

the strain-rate region from 1.0 3 1025 to 1.2 3 1021 s21. We

noticed that the multiple relaxation times (n> 1) would be a

much better choice for other polymeric materials in higher sys-

tems. In future work, we envisage that the tensile and compres-

sive deformation responses of epoxy and its composites in

different rate ranges will be investigated to further verify

eq. (11).

Figure 2. Normalized stress–strain curves of (a) PC, (b) PA6, (c) hot-mix asphalt, (d) HTPB, (e) HDPE, and (f) PP under coordinate scaling transfor-

mation at different strain rates. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. Values of E0/E(s) at different strain rates for (a) PC, PA6, HDPE, and PP and (b) hot-mix asphalt and HTPB. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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r�5
E0

EðsÞ

ðE�ðt�Þ

0

expf2 E� t�Þ2E�ðs�ð Þ
s�Mi

� �
gdE�ðs�Þ (12)

Figure 2 indicates that the normalized stress–strain curves were

strain-rate independent, which implies that

E0=EðsÞ5Constant (13)

s�M 5Constant (14)

The values of E0/E(s) at different strain rates are shown in Figure

1 and plotted in Figure 3. From these figures, E0/E(s) could be

regarded as a strain-rate-independent parameter.

According to eq. (14), the normalized relaxation time is a con-

stant, and this leads to the following equation:

s�M 5sM=t05a (15)

where a is a constant.

Thus

sM 5at0 (16)

Equation (16) indicates that the relaxation time is directly pro-

portional to t0.

The magnitudes of t0 at different strain rates are shown in Fig-

ure 1 and plotted in Figure 4. We observed that log t0 was

directly proportional to log _E, namely

logt05blog _E1logc (17)

where b is the effect factor of strain rate, c is the value of t0 at a

reference strain rate. Thus

t05cð _E= _ErÞb (18)

where _Er51s21 is a reference strain rate.

To check the power law relation between t0 and _E, a numerical

fitting method was adopted. The calculated results were in

agreement with the data of t02 _E (see Figure 4); the correlation

coefficient close to 1 indicated that _E following power law

dependence with t0 was believable. The numerical fitting values

of c and b for the six mentioned polymeric solid materials are

listed in Table II.

From eqs. (16) and (18), we obtained

sM 5að _E= _ErÞb (19)

where a 5 ac is a parameter of the materials.

It can be concluded from eq. (19) that the relaxation time is

not a constant but a function of the strain rate. Furthermore,

the relaxation time varies in a power law with strain rate.

The time-dependent or viscoelastic behavior of the polymeric

system is linked to complicated molecular adjustments that

result from macroscopic mechanical deformations.26 Alfrey27

described the morphology of a polymer in terms of convolu-

tions, curls, and kinks. Each molecular bond has a rotational

freedom that allows the direction of the chain molecule to

change at every bond. Thus, the entire molecular chain can

twist, spiral, and tangle with itself or with adjacent chains. In

view of molecular network models,28–30 polymers are composed

by a network of molecular chains with different lengths, for

example, in localized regions with relatively short chains and in

long convolutions that span larger areas. Molecules in polymers

Figure 4. Magnitude of t0 values at different strain rates for (a) PC, PA6, HDPE, and PP and (b) hot-mix asphalt and HTPB. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table II. Magnitudes of c and b

Viscoelastic solid c (s) b

PC 0.05737 21.003

PA6 0.06768 20.9579

Hot-mix asphalt 0.04355 20.9272

HTPB 0.4335 20.9836

HDPE 0.09101 21.057

PP 0.06835 21.001
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subjected to stress slide except at the entanglements and cross-

links. Relaxation, intermolecular slippage accompanied by some

reversible breaking or swapping of bonds, takes place during

this time. A molecular chain may be considered approximately

as a nonlinear spring, and it possesses characteristics of relaxa-

tion because of readjustments of the kink in the chains. At a

greater strain rate, the kinks of a chain with shorter length cor-

responding to a lesser mass may easily slide, and this will lead

to a decrease in the relaxation time; under a lower strain rate,

however, the kinks of chains with both lesser mass and larger

mass are all induced to slide, and this results in a longer relaxa-

tion time. This is why the time for relaxation processes

decreases with increasing strain rate.

CONCLUSIONS

In this study, we normalized the stress–strain curves of PC,

PA6, hot-mix asphalt, HTPB, HDPE, and PP under quasi-static

loading according to the coordinate scaling transformation

method. The normalized tension behaviors of the six types of

polymeric materials were found to not be sensitive to the strain

rate. Moreover, this behavior may be described well by the con-

stitute equation based on a nondimensional Maxwell model

incorporating the strain-rate-dependent relaxation time.

From the experimental results at a low strain rate, the ratio of the

initial modulus and secant modulus at the maximum stress did

not rely on the strain rate, and the correlation between t0 and

strain rate obeyed the power law relation. We further inferred that

the power law relation existed between the relaxation time and

strain rate. This concise and explicit formulation provides a

potential approach for accurately obtaining the relaxation time of

polymer glass, and it would help to efficiently track the mechani-

cal response of viscoelastic solids in a quasi-static case.
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